Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298513

RESUMO

Pediatric brain tumors remain a significant source of morbidity and mortality. Though developments have been made in treating these malignancies, the blood-brain barrier, intra- and inter-tumoral heterogeneity, and therapeutic toxicity pose challenges to improving outcomes. Varying types of nanoparticles, including metallic, organic, and micellar molecules of varying structures and compositions, have been investigated as a potential therapy to circumvent some of these inherent challenges. Carbon dots (CDs) have recently gained popularity as a novel nanoparticle with theranostic properties. This carbon-based modality is highly modifiable, allowing for conjugation to drugs, as well as tumor-specific ligands in an effort to more effectively target cancerous cells and reduce peripheral toxicity. CDs are being studied pre-clinically. The ClinicalTrials.gov site was queried using the search terms: brain tumor and nanoparticle, liposome, micelle, dendrimer, quantum dot, or carbon dot. At the time of this review, 36 studies were found, 6 of which included pediatric patients. Two of the six studies investigated nanoparticle drug formulations, whereas the other four studies were on varying liposomal nanoparticle formulations for the treatment of pediatric brain tumors. Here, we reviewed the context of CDs within the broader realm of nanoparticles, their development, promising pre-clinical potential, and proposed future translational utility.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Pontos Quânticos , Humanos , Criança , Sistemas de Liberação de Medicamentos , Carbono/uso terapêutico , Carbono/química , Neoplasias Encefálicas/tratamento farmacológico , Lipossomos , Nanopartículas/uso terapêutico , Nanopartículas/química , Nanomedicina Teranóstica
2.
Nanoscale ; 14(47): 17607-17624, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36412202

RESUMO

The carbon nitride dot (CND) is an emerging carbon-based nanomaterial. It possesses rich surface functional moieties and a carbon nitride core. Spectroscopic data have demonstrated the analogy between CNDs and cytosine/uracil. Recently, it was found that CNDs could interrupt the normal embryogenesis of zebrafish. Modifying CNDs with various nucleobases, especially cytosine, further decreased embryo viability and increased deformities. Physicochemical property characterization demonstrated that adenine- and cytosine-incorporated CNDs are similar but different from guanine-, thymine- and uracil-incorporated CNDs in many properties, morphology, and structure. To investigate the embryogenesis interruption at the cellular level, bare and different nucleobase-incorporated CNDs were applied to normal and cancerous cell lines. A dose-dependent decline was observed in the viability of normal and cancerous cells incubated with cytosine-incorporated CNDs, which matched results from the zebrafish embryogenesis experiment. In addition, nucleobase-incorporated CNDs were observed to enter cell nuclei, demonstrating a possibility of CND-DNA interactions. CNDs modified by complementary nucleobases could bind each other via hydrogen bonds, which suggests nucleobase-incorporated CNDs can potentially bind the complementary nucleobases in a DNA double helix. Nonetheless, neither bare nor nucleobase-incorporated CNDs were observed to intervene in the amplification of the zebrafish polymerase-alpha 1 gene in quantitative polymerase chain reactions. Thus, in conclusion, the embryogenesis interruption by bare and nucleobase-incorporated CNDs might not be a consequence of CND-DNA interactions during DNA replication. Instead, CND-Ca2+ interactions offer a plausible mechanism that hindered cell proliferation and zebrafish embryogenesis originating from disturbed Ca2+ homeostasis by CNDs. Eventually, the hypothesis that raw or nucleobase-incorporated CNDs can be nucleobase analogs proved to be invalid.


Assuntos
Citosina , Peixe-Zebra , Animais , Uracila
3.
World Neurosurg ; 168: e43-e49, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36202342

RESUMO

OBJECTIVE: U.S. neurosurgery programs are increasingly using social media accounts. We performed a search and analysis of social media accounts across all U.S. neurosurgical training programs with an attempt at understanding the relative utilization by various subspecialties. METHODS: We compiled a list of all Accreditation Council for Graduate Medical Education-accredited U.S. neurosurgery programs and the faculty. Each faculty member was classified on the basis of their subspecialty. Next, the Twitter, Facebook, and Instagram profiles were extensively searched for the number of followers and posts. RESULTS: We analyzed 110 programs with 1829 clinical faculty. Programs with a larger number of faculty (P = 0.035; χ2 = 13.528) and residents (P = 0.003; χ2 = 11.865) were more likely to have a social media account. Likewise, faculty and resident numbers had a positive correlation to Twitter (P = 0.037 for faculty size; P = 0.008 for residents' size) and Instagram followers (P = 0.003 for faculty size; P < 0.001 for residents' size). We additionally found a significant association between subspecialty type and the presence of a Twitter and Instagram account (P = 0.001; P = 0.028) and the number of followers (P = 0.004; P = 0.013), especially the vascular and oncology subspecialties. CONCLUSIONS: Many U.S. neurosurgical programs have social media accounts with larger programs likely to have social media accounts. While there is a larger percentage of spine faculty within individual departments, vascular and oncology subspecialties are more likely to have a Twitter account. We suggest the need for increased engagement among spine faculty across social media platforms.


Assuntos
Internato e Residência , Neurocirurgia , Mídias Sociais , Humanos , Educação de Pós-Graduação em Medicina , Acreditação
4.
J Neurosurg Pediatr ; : 1-6, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36087318

RESUMO

OBJECTIVE: Many pathways to positions of leadership exist within pediatric neurological surgery. The authors sought to investigate common trends in leadership among pediatric neurosurgery fellowship directors (FDs) and describe how formalized pediatric neurosurgical training arrived at its current state. METHODS: Fellowship programs were identified using the Accreditation Council for Pediatric Neurosurgery Fellowships website. Demographic, training, membership, and research information was collected via email, telephone, curricula vitae, and online searches. RESULTS: The authors' survey was sent to all 35 identified FDs, and 21 responses were received. Response data were supplemented with curricula vitae and online data prior to analysis. FDs were predominantly male, self-identified predominantly as Caucasian, and had a mean age of 53 years. The mean duration from residency graduation until FD appointment was 13.4 years. The top training programs to produce future FDs were New York University and Washington University in St. Louis (residency) and Washington University in St. Louis (fellowship). CONCLUSIONS: This study characterizes the current state of pediatric neurosurgery fellowship program leadership. The data serve as an important point of reference to compare with future leadership as well as contrast with neurosurgery and other surgical disciplines in general.

5.
Front Cell Neurosci ; 16: 929593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966198

RESUMO

Objective: To systematically evaluate the literature on the therapeutic use of Schwann cells (SC) in the repair of peripheral nerve injuries. Methods: The Cochrane Library and PubMed databases were searched using terms [("peripheral nerve injury" AND "Schwann cell" AND "regeneration") OR ("peripheral nerve injuries")]. Studies published from 2008 to 2022 were eligible for inclusion in the present study. Only studies presenting data from in-vivo investigations utilizing SCs in the repair of peripheral nerve injuries qualified for review. Studies attempting repair of a gap of ≥10 mm were included. Lastly, studies needed to have some measure of quantifiable regenerative outcome data such as histomorphometry, immunohistochemical, electrophysiology, or other functional outcomes. Results: A search of the PubMed and Cochrane databases revealed 328 studies. After screening using the abstracts and methods, 17 studies were found to meet our inclusion criteria. Good SC adherence and survival in conduit tubes across various studies was observed. Improvement in morphological and functional outcomes with the use of SCs in long gap peripheral nerve injuries was observed in nearly all studies. Conclusion: Based on contemporary literature, SCs have demonstrated clear potential in the repair of peripheral nerve injury in animal studies. It has yet to be determined which nerve conduit or graft will prove superior for delivery and retention of SCs for nerve regeneration. Recent developments in isolation and culturing techniques will enable further translational utilization of SCs in future clinical trials.

6.
Pharmaceutics ; 14(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890360

RESUMO

The current prognosis for glioblastoma is dismal. Treatment-resistant glioblastoma stem cells (GSCs) and the failure of most drugs to reach therapeutic levels within the tumor remain formidable obstacles to successful treatment. Chalcones are aromatic ketones demonstrated to reduce malignant properties in cancers including glioblastoma. Nanomedicines can increase drug accumulation and tumor cell death. Carbon-dots are promising nanocarriers that can be easily functionalized with tumor-targeting ligands and anti-cancer drugs. Therefore, we synthesized a series of 4'-amino chalcones with the rationale that the amino group would serve as a "handle" to facilitate covalent attachment to carbon-dots and tested their cytotoxicity toward GSCs. We generated 31 chalcones (22 4'-amino and 9 4' derivatives) including 5 novel chalcones, and found that 13 had an IC50 below 10 µM in all GSC lines. After confirming that the 4-amino group was not part of the active pharmacophore, chalcones were attached to transferrin-conjugated carbon-dots. These conjugates were significantly more cytotoxic than the free chalcones, with the C-dot-transferrin-2,5, dimethoxy chalcone conjugate inducing up to 100-fold more GSC death. Several of the tested chalcones represent promising lead compounds for the development of novel anti-GSC drugs. Furthermore, designing amino chalcones for carbon-dot mediated drug delivery is a rational and effective methodology.

7.
Front Oncol ; 12: 883318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814452

RESUMO

High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy's role as an adjunctive modality.

8.
J Neurooncol ; 157(2): 345-353, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192136

RESUMO

PURPOSE: Outpatient brain surgery has many advantages for the psychological and physical wellbeing of patients, as well as reduced costs to the health care system. Compared with inpatient admissions, same day discharges reduce patient exposure to nosocomial infection, thromboembolic complications, and medical error. We aim to establish a prospectively collected quality outcomes database to examine the outcomes of patients that undergo brain tumor resection and are discharged home the same day as surgery. METHODS: We have established a prospectively collected quality outcomes database to examine the outcomes of all patients that underwent brain tumor resection by a single neurosurgeon (R.J.K) at our institution from August 2020 to August 2021 and were discharged home the same day as surgery. RESULTS: Over the one-year period this study was conducted, 37 of 334 patients met inclusion criteria for the outpatient protocol. Thirty-two patients were discharged on the same day as surgery. Five patients (14%) were considered eligible for outpatient surgery but were ultimately admitted to the hospital postoperatively and were discharged after an overnight observation. No postoperative complications were noted at two-week postoperative follow-up. CONCLUSION: In select patients undergoing brain tumor surgery, same day discharge should be considered. Establishing a multidisciplinary team of physicians, nurses, radiologists, and physical therapists is critical to achieving this aim. Physicians should have a low threshold to admit a patient with concerning exam findings, complications, or complicated past medical history. Once discharged, open communication with the patient and their family is critical to detect complications that should trigger rehospitalization and intervention.


Assuntos
Neoplasias Encefálicas , Alta do Paciente , Encéfalo , Neoplasias Encefálicas/cirurgia , Humanos , Projetos Piloto , Estudos Prospectivos
9.
Surg Neurol Int ; 12: 464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621579

RESUMO

BACKGROUND: The surgical treatment of normal pressure hydrocephalus (NPH) with shunting remains controversial due to the difficulty in distinguishing such pathology from other neurological conditions that can present similarly. Thus, patients with suspected NPH should be carefully selected for surgical intervention. Historically, clinical improvement has been measured by the use of functional grades, alleviation of symptoms, and/or patient/family-member reported surveys. Such outcome analysis can be subjective, and there is difficulty in quantifying cognition. Thus, a push for a more quantifiable and objective investigation is warranted, especially for patients with idiopathic NPH (INPH), for which the final diagnosis is confirmed with postoperative clinical improvement. We aimed to use Apple Health (Apple Inc., Cupertino, CA) data to approximate physical activity levels before and after shunt placement for NPH as an objective outcome measurement. The patients were contacted and verbally consented to export Apple Health activity data. The patient's physical activity data were then analyzed. A chart review from the patient's EMR was performed to understand and better correlate recovery. CASE DESCRIPTION: Our first patient had short-term improvements in activity levels when compared to his preoperative activity. The patient's activity level subsequently decreased at 6 months and onward. This decline was simultaneous to new-onset lumbar pain. Our second patient experienced sustained improvements in activity levels for 12 months after his operation. His mobility data were in congruence with his subjectively reported improvement in clinical symptoms. He subsequently experienced a late-decline that began at 48-months. His late deterioration was likely confounded by exogenous factors such as further neurodegenerative diseases coupled with old age. CONCLUSION: The use of objective activity data offers a number of key benefits in the analysis of shunted patients with NPH/INPH. In this distinctive patient population, detailed functional outcome analysis is imperative because the long-term prognosis can be affected by comorbid factors or life expectancy. The benefits from using smartphone-based accelerometers for objective outcome metrics are abundant and such an application can serve as a clinical aid to better optimize surgical and recovery care.

10.
Front Oncol ; 11: 640720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763373

RESUMO

Glioblastoma (GBM) remains one of the most lethal primary brain tumors in both adult and pediatric patients. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). Neoplastic cells, especially those with high proliferative potential such as GSCs, have been shown to upregulate UCP2 as a cytoprotective mechanism in response to chronic increased reactive oxygen species (ROS) exposure. This upregulation plays a central role in the induction of the highly glycolytic phenotype associated with many tumors. In addition to shifting metabolism away from oxidative phosphorylation, UCP2 has also been implicated in increased mitochondrial Ca2+ sequestration, apoptotic evasion, dampened immune response, and chemotherapeutic resistance. A query of the CGGA RNA-seq and the TCGA GBMLGG database demonstrated that UCP2 expression increases with increased WHO tumor-grade and is associated with much poorer prognosis across a cohort of brain tumors. UCP2 expression could potentially serve as a biomarker to stratify patients for adjunctive anti-tumor metabolic therapies, such as glycolytic inhibition alongside current standard of care, particularly in adult and pediatric gliomas. Additionally, because UCP2 correlates with tumor grade, monitoring serum protein levels in the future may allow clinicians a relatively minimally invasive marker to correlate with disease progression. Further investigation of UCP2's role in metabolic reprogramming is warranted to fully appreciate its clinical translatability and utility.

11.
Neurosurg Focus ; 50(2): E3, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524946

RESUMO

OBJECTIVE: Adult glioblastoma (GBM) has proven refractory to decades of innovation. Oncolytic viral therapy represents a novel therapy that uses viral vectors as both a delivery and therapeutic mechanism to target GBM cells. Despite the growing body of basic science data supporting the feasibility of viral therapy to treat GBM, the reporting of clinical trial results is heterogeneous. Correspondingly, the aim of this study was to present a contemporary summary of the progress all clinical trials have made to date. METHODS: The ClinicalTrials.gov database was reviewed in August 2020 for all possible interventional clinical trials involving viral vector-based therapy to treat adult GBM. These were then screened against selection criteria to identify pertinent clinical trials. RESULTS: A total of 29 oncolytic viral therapy trials treating adult GBM were identified. The median start and expected completion years were 2014 and 2020, respectively. At the time of this writing, 10 (35%) trials were reported to have completed recruitment, whereas 7 (24%) were actively recruiting. The median target enrollment number was 36 (range 13-108), with the majority of trials being phase I (n = 18, 62%), and involving secondary GBM among other malignant glioma (n = 19, 66%). A total of 10 unique viral vectors were used across all trials, with the most common being adenovirus (n = 16, 55%). Only 2 (7%) phase I trials to date have reported outcomes on the ClinicalTrials.gov portal. Results of 12 additional clinical trials were found in academic publications, with median progression-free and overall survival times of 3 and 15 months, respectively, after the first viral dose at recurrence. The coordination of the large majority of trials originated from the US (n = 21, 72%), and the median number of testing sites per trial was 1 (range 1-15), via industry funding (n = 18 trials, 62%). CONCLUSIONS: There are multiple early-stage oncolytic viral therapy clinical trials for adult GBM currently active. To date, limited results and outcomes are promising but scarce. The authors expect this to change in the near future because many trials are scheduled to have either nearly or actually reached their expected recruitment completion time. How exactly oncolytic viral therapy will fit into the current treatment paradigms for primary and secondary GBM remains to be seen, and will not be known until safety and toxicity profiles are established by these clinical trials.


Assuntos
Glioblastoma , Glioma , Terapia Viral Oncolítica , Glioblastoma/terapia , Humanos , Recidiva Local de Neoplasia , Relatório de Pesquisa
12.
J Clin Neurosci ; 78: 439-443, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32387256

RESUMO

Calcifying pseudoneoplasms of the neuraxis (CAPNON) are rare benign lesions that can arise anywhere within the central nervous system. The etiology of these lesions remains unknown and diagnosis is made on pathohistological analysis. We present the case of a 35-year-old male patient with a history of epilepsy since childhood who was evaluated for refractory seizures. MRI revealed a small lesion in the left-posterior temporal lobe suspected to be a cavernoma. A gross total resection of the lesion was achieved via a left temporal craniotomy and pathological analysis revealed CAPNON. At 6 months follow-up, the patient remained neurologically intact and his seizures had ceased.


Assuntos
Calcinose/patologia , Sistema Nervoso Central/patologia , Convulsões/etiologia , Adulto , Calcinose/complicações , Calcinose/diagnóstico por imagem , Cefalometria , Humanos , Imageamento por Ressonância Magnética , Masculino , Lobo Temporal/patologia , Lobo Temporal/cirurgia , Resultado do Tratamento
13.
J Neurooncol ; 147(2): 317-326, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32096068

RESUMO

PURPOSE: Glioblastoma (GBM) remains one of the most lethal primary brain tumors in children and adults. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). METHODS: Gene expression data was obtained from the online patient-histology database, GlioVis. GSC mitochondria morphology was examined by TEM. Cell viability and effect on GSC self-renewal was determined via MTS assay and neurosphere assay, respectively. Proteins were evaluated by Western Blot. RESULTS: Enzymes necessary for ketone catabolism (BDH1, OXCT1 and ACAT1) are significantly downregulated in adult and pediatric GBM. GSC mitochondrial ultrastructure suggested defects in oxidative phosphorylation. Treatment of both GBM and GSC cell lines resulted in dose-dependent decreases in viability in response to glycolytic inhibitor 2-deoxy-D-glucose (2-DG), and ketone body Acetoacetate (AA), but not ß-hydroxybutyrate (ßHB). AA induced apoptosis was confirmed by western blot analysis, indicating robust caspase activation and PARP cleavage. AA reduced neurosphere formation at concentrations as low as 1 mM. Combined treatment of low dose 2-DG (50 µM) with AA resulted in more cell death than either treatment alone. The effect was greater than additive at low concentrations of AA, reducing viability approximately 50% at 1 mM AA. AA was found to directly upregulate mitochondrial uncoupling protein 2 (UCP2), which may explain this potential drug synergism via multi-faceted inhibition of the glycolytic pathway. CONCLUSION: Targeting the metabolic pathway of GBM via glycolytic inhibition in conjunction with ketogenic diet or exogenous ketone body supplementation warrants further investigation as a promising adjunctive treatment to conventional therapy.


Assuntos
Acetoacetatos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células , Desoxiglucose/farmacologia , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ácido 3-Hidroxibutírico/farmacologia , Adulto , Antimetabólitos/farmacologia , Neoplasias Encefálicas/patologia , Sobrevivência Celular , Criança , Quimioterapia Combinada , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...